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Key points: 

A new theory is developed for parameterizing unresolved spatial structure of cloud to 

capture subgrid-scale cloud-radiation interactions. 

Abstract:  

 

Subgrid-scale variability is one of the main reasons why parameterizations are needed in 

large-scale models. Although some parameterizations started to address the issue of 

subgrid variability by introducing a subgrid probability distribution function (PDF) for 

relevant quantities, the spatial structure has been typically ignored and thus the subgrid-

scale interactions cannot be accounted for physically. Here we present a new statistical-

physics-like approach whereby the spatial autocorrelation function can be used to 

physically capture the net effects of subgrid cloud interaction with radiation. The new 

approach is able to faithfully reproduce the Monte Carlo 3D simulation results with 

several orders less computational cost, allowing for more realistic representation of cloud 

radiation interactions in large-scale models. 

 

Index Terms: 

 

Cloud structure, Subgrid variability, Radiative transfer 



1. Introduction 

Parameterizations in a global climate model (GCM) are designed to describe the 

"collective effects" of processes that occur at scales smaller than GCM grid sizes 

(Randall et al., 2003). Parameterizations of many processes such as radiation transfer and 

autoconversion employ the assumption of independent column approximation (ICA), i.e., 

there is no interaction between subcolumns and the grid-average effects depend only on 

the probability distribution function (PDF) of relevant variables (Pincus et al., 2003; 

Morrison et al., 2008). ICA approaches use one-point statistical information (e.g., PDF), 

called subgrid variability in this letter and structural information (e.g., spatial 

organization and arrangement) that can be characterized by multi-point statistics is 

generally ignored. However, coherent structures have been found at scales ranging from 

droplet clusters to organized cloud, and have complex interactions with radiation, 

dynamical processes, and mesoscale environment systems (Kostinski and Shaw, 2001; 

Marshak et al., 2005; Feingold et al., 2010). Failure to include subgrid cloud and 

convection structures can lead to inadequate simulations of large-scale features (Mapes 

and Neale, 2011). It has been found that ignoring cloud spatial organization tends to 

underestimate or overestimate the domain-average radiation fluxes dependent on many 

factors, e.g., solar angle and cloud geometry (Zuidema and Evans, 1998; Barker et al., 

1999; Schierer and Macke, 2001; Davis and Mineev-Weinstein, 2011; Hogan and Shonk, 

2013).  

Given the detailed cloud field, the radiation field can be found by numerically solving the 

3D transport equation (Evans, 1998). In many applications, the knowledge of 3D cloud 

field is unavailable or expensive to obtain. It is often difficult to draw any theoretical 



conclusion based on the 3D approach: there could be numerous configurations of 3D 

cloud field that will give statistically similar radiation characteristics (Anisimov and 

Fukshansky, 1992). Besides these, numerically solving the 3D problem is too expensive 

to use in practical applications. In climate models, it is a standard practice to employ the 

ICA assumption, i.e., divide the domain into two (clear and cloudy) or more subcolumns 

(Pincus et al., 2003; Shonk and Hogan, 2008) and independently calculate the radiation 

flux within each subcolumn.  

Previous efforts on parameterization of 3D cloud-radiation interaction in large-scale 

models have focused on binary medium or oversimplified closure assumptions (Anisimov 

and Fukshansky, 1992; Vainikko, 1973; Titov, 1990; Stephens, 1988; Pomraning, 1996; 

Tompkins and Di Giuseppe, 2007; Kassianov and Veron, 2011; Hogan and Shonk, 2013). 

Here we present a new statistical physics-like simulation approach that makes a direct 

connection between the statistical characterization of cloud structure and the statistical 

moments of the radiation field by properly averaging the 3D equation. The unknowns of 

the resultant statistical radiative transport (SRT) equations are actually the statistical 

moments of the radiation field, and the model inputs are some statistical moments of the 

3D medium structure. In this letter, we show that a spatial correlation function can serve 

as the key to statistically describing cloud-radiation interactions. 

2. Basic theory and method 

To examine what structural information is needed for the transport problem, let us 

consider radiation transfer in a cloudy atmosphere vertically confined within [0, 1] where 

the top is at z = 0. The monochromatic radiance at r=(x, y, z) in direction ( , )µ ϕ=Ω  is 



denoted by I(r, Ω), where µ is the cosine of the zenith angle and φ  is the azimuth angle. 

The solar radiance field satisfies the 3D radiative transfer equation of integral form 

(Chandrasekar, 1950): 
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where ' ( ' ) /z z µ= + −r r Ω , I(rb, Ω) is the incoming solar radiance at the upper 

boundary for downward directions (µ<0) and is the surface reflection for upward 

directions (µ>0); σ(r) and ω0(r) are respectively the cloud extinction coefficient and 

single scattering albedo; and p(r, Ω', Ω) is the scattering phase function. The second term 

on the left-hand side is the path extinction and the first term on the right-hand side is the 

source due to scattering. Note that the extinction coefficient is normalized with regard to 

the depth of the atmosphere layer and its integral over [0, 1] corresponds to the optical 

depth of the cloudy atmosphere. The interval of integral is given by E=[0, z] for 

downward directions and E=[z, 1] for upward directions. Here we introduce the ergodic 

hypothesis, which implies that the transport processes should possess certain translational 

invariance in spatial coordinate and thus lead to the equality of ensemble and spatial 

averages (Titov, 1990; Rybicki, 1965). It is feasible to assume that the deterministic 

transfer equation is valid for each member of the ensemble system. Therefore, statistics is 

introduced only to account for the lack of knowledge about the detailed structure of the 

cloud, not about the equations governing the transport processes. 



 We further assume that the scattering phase function p and single scattering albedo ω0 

depend only on height z. Let <…> denote the horizontal or ensemble average, the vertical 

profile of horizontally-averaged radiance can be obtained after applying the notations  

( , ) ( , )I z I=Ω r Ω  and ( ', ) ( ') ( ', )U z Iσ=Ω r r Ω ,  
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This averaging process is conceptually similar to the Reynolds averaging widely used in 

fluid dynamics (Reynolds, 1895).  The domain-average radiance I  is now explicitly 

presented in Eq. (2) but the equation is not closed since a new variable U still needs to be 

determined. The variable U  is the mean product of radiance and extinction coefficient 

and, with the assumption of horizontally-invariant single scatter albedo, radiation 

absorption A at any level can be readily found by: [ ]0 4
( ) 1 ( ) ( , )A z z U z d

π
ω= − ∫ Ω Ω. 

Multiplying Eq. (1) with σ(r) and performing the horizontal average again, we obtain an 

equation for U : 
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To solve this equation, we can either truncate the higher order terms at certain point, or 

introduce independent hypotheses of closure to determine the higher order terms in terms 



of the lower order ones. Here the second approach is used. We modified the standard 

Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model (Cahalan 

et al., 2005; Pincus and Evans, 2010) to compute and record 3D radiance field. Based on 

the analysis of Monte Carlo simulations with a variety of cloud cases (the supplementary 

material provides some details on how the closure is derived), the higher order term 

( ) ( ') ( ', )Iσ σr r r Ω  can be approximated in two steps:  
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 ( ) ( ')σ σr r  is the  spatial covariance function of cloud extinction coefficients at levels z 

and z’  along the direction Ω and, with an appropriate normalization, it becomes the 

spatial autocorrelation function.  For the rest of this letter, the terms covariance and 

autocorrelation are interchangeable. The correlation function provides a measure of the 

spatial structure of cloud extinction coefficient. 

{ }1( ') inf ( ', ', ') ( ' , ' , ') :  [0,  ] ,  [0,  ]f z x y z x x y y z x yσ σ= +Δ +Δ Δ ∈ ∞ Δ ∈ ∞ , i.e., the 

minimum autocorrelation at level z'. The coefficients f2 and f3 depend only on the 

horizontal average (σ ) and variance (V) of cloud extinction coefficient in the 

corresponding layer: 2( ') 2 ( '),f z zσ=  and 2 2 2
3( ') ( ') ( ') (r ') 2 ( ')f z V z z zσ σ σ= − = − . It 

can be verified that, for binary media, Eqs. (4a) and (4b) will converge to the closure 

scheme of Titov (1990) that was specifically designed for binary media. To accurately 



calculate the direct (unscattered) radiation, knowledge about the probability distribution 

function of extinction coefficient may also be needed. 

Given the closure scheme of Eq. (4), the weighted mean radiation field ( , )U z Ω  can be 

determined by analytically or numerically solving the 1D Volterra integral equation (3) 

and then the mean radiation field ( , )I z Ω  can be readily obtained through Eq. (2). 

It can be seen from Eqs. (3) and (4) that the term ( ) ( ') ( ', )Iσ σr r r Ω  is the key to 

describing the interaction between the 3D radiation and cloud fields; the function 

( ) ( ')σ σr r  serves as a direct linkage between the mean radiation field and 3D cloud 

structure and encapsulates information of the 3D cloud structure across various spatial 

scales. Fig. 1 shows an example of spatial correlation function for a 3D cloud field 

simulated by a large eddy simulation model (Pincus and Evans, 2010). When the 

separation distance is zero, the cloud field at r' = r perfectly correlates with itself, 

i.e., 2( ) ( ') ( ) (z)V zσ σ σ= +r r . The correlation function approaches the asymptote 

(z) ( ')zσ σ , i.e., statistically independent, once the separation distance becomes large 

enough. The decorrelation length is related to mean cloud size in the x-dimension in this 

example. It should be noted that the correlation function can also be smaller 

than (z) ( ')zσ σ if the properties are negatively correlated.  

3. Numerical results 

To evaluate the new approach, we perform a suite of numerical simulations using a 

discrete ordinate method for angular discretization (Bass et al., 1986). The angular 

discretization uses an equal-area Carlson quadrature scheme and therefore both the 



latitudinal and longitudinal variations are represented by the discrete ordinates. The 

spatial (vertical) discretization is chosen to make the mean optical depth of each layer not 

exceeding 1.  Eq. (3) is now converted to a system of linear equations with the vertical 

and angular discretizations. To use efficient solvers like DISORT (Stamnes et al., 1988), 

further simplifications of Eq. (3) will be required. Since the purpose of this letter is to 

demonstrate the viability of the SRT approach, further simplification and numerical 

optimization will be the topic of a future research. A successive order approximation is 

used to simulate multiple scattering where the lower order scattering serves as the source 

for the higher order calculation (Shabanov et al., 2000). For the zero-order radiation 

calculation, the source function is set to be unit which corresponds to a collimate incident 

beam without any diffuse component. The first-order scattering is then determined with 

the source function based on the zero-order solution. This process is repeated until the 

solution converges with a prescribed criteria. For the medium with a very large optical 

thickness, a large number of vertical layers may be needed and the successive order 

approximation method can be tedious. For all simulations performed in this research, we 

assume perfect knowledge about the cloud spatial correlation functions so that the 

accuracy of the second order closure scheme (Eq. 4) can be evaluated against the full 3D 

Monte Carlo results (Barker et al., 1999).  

To examine the impacts of ignoring cloud structure, called 3D effects here, we also 

compare the SRT results with two widely-used approximation methods: Plane-Parallel 

Approximation (PPA) and Independent Column Approximation (ICA) (Barker et al., 

1999; Oreopoulos and Barker, 1999; Barker and Davis, 2005). The PPA approach 

assumes plane parallel geometry with each layer taking horizontal mean optical 



properties and ignores the horizontal fluctuations. The ICA approach assumes no net 

horizontal transport of particles or photons between columns so that the mean radiation 

characteristics can be obtained by solving a1D deterministic transport equation for each 

column and averaging the resultant solutions.  

The first group of simulations are based on an idealized checkerboard-like medium as 

shown in Fig. 2a; this case is notoriously challenging for 1D transport models since its 

exaggeration of 3D transport effects (Wiscombe, 2005). The optical thickness of the 

black and white cells is 18 and 0. The aspect ratio of each individual cell, defined as the 

ratio of the horizontal dimension to the vertical dimension, varies from 0.01 to 100 for 

different simulations. The medium is illuminated from above by collimated light at 0o or 

30o zenith angles. The lateral boundary condition is assumed to be periodic and the lower 

boundary is ideally black. The single scattering albedo of the medium is 1. We adopt 

Henyey–Greenstein scattering here to represent the scattering phase function (Henyey 

and Greenstein, 1941) and the asymmetry parameter is set to 0.85. 

An aspect ratio value of 1.0 is used to obtain the two examples of spatial correlation 

function shown in Fig. 2b. Unlike the stratocumulus cloud shown in Fig. 1, the spatial 

correlation function of the checkerboard medium is periodic and does not vanish with 

increasing distance. The correlation function is also capable of describing the anisotropic 

structures of the medium since it indicates quite different patterns along different 

directions. 

For the 0o illumination, the scene albedo simulated by the 3D Monte Carlo method 

approaches 0.210 at the small aspect ratio limit and 0.292 at the large aspect ratio limit. 



For the 30o illumination, the scene albedo ranges from 0.310 to 0.449 for various aspect 

ratios. As expected, neither ICA nor PPA solutions show any dependence on the aspect 

ratio. The scene albedos by the PPA and ICA approaches are 0.383 and 0.296 for the 0o 

illumination, and 0.445 and 0.310 for the 30o illumination. The PPA albedos are always 

higher than others, owing to the Jensen's inequality for convex functions (Jensen, 1906). 

The resulting albedo bias from PPA and ICA varies with aspect ratio and is up to 70% of 

the true albedo of the checkerboard medium.  

In contrast, the SRT albedos follow closely with the 3D Monte Carlo curves over the 

entire range of aspect ratio, suggesting that the SRT faithfully represents the dependence 

of horizontal transport effects on aspect ratio. For the 0o illumination, the SRT solutions 

successfully reproduce the reduction of albedo that is due to radiative channeling and 

often found at small illumination angles, i.e., horizontal transport enhances the domain-

average transmission (and suppresses reflection) relative to the ICA solutions (Davis and 

Marshak, 2010). For a higher illumination angle, the net effect of horizontal transport is 

to reduce transmission (and enhance reflection) and as a result both the 3D and SRT 

solutions asymptote the PPA solutions at small aspect ratio limit. The horizontal transport 

effects are most evident when the aspect ratios are small and the discrepancy between 

SRT and ICA results decreases with increasing aspect ratio. When the horizontal 

dimension of each cell is much larger than its vertical dimension, the net effect of 

horizontal transport become negligible and the SRT solutions asymptote those of the ICA 

regardless of illumination angle. We find that whether horizontal transport enhances or 

suppress the scene albedo depends on many factors, including vertical and horizontal 



arrangement, horizontal fluctuation of optical properties of the medium, scattering phase 

function, and illumination angle.  

The second group of simulations are for a cumulus cloud system simulated by the 

DARMA model (Ackerman et al., 1995) shown in Fig. 3a. Figure 3b shows the spatial 

autocorrelation functions of the cloud extinction at level z=0.5 for two horizontal 

directions. It can be seen that the cumulus cloud appears to be statistically isotropic 

despite its large spatial variability. Using the more realistic cloud field may provide a 

better estimate of 3D effects in real world clouds. The single scattering albedo of cloud 

droplet is 1.0 and the scattering phase function is the same as the first case. Boundary 

conditions are the same as in the first case. To illustrate the dependence of horizontal 

transport on cloud structure, we vary the cloud aspect ratio from 0.01 to 100 to represent 

different levels of horizontal transport effects and keep other cloud properties fixed. 

Apparently, the PPA and ICA results do not depend on cloud aspect ratio. For the 0o 

illumination, the SRT solutions successfully reproduce the reduction of albedo with 

increasing horizontal transport but the SRT approach seems to slightly overestimate the 

scene albedo compared to the 3D results (Figure 3c). For the 30o illumination, horizontal 

transport tends to enhance the scene albedo, as suggested by Figure 3d. As expected, both 

the SRT and 3D results converge to the ICA results when cloud aspect ratio becomes 

very large.  

The third group of simulations are for the stratocumulus cloud system shown in Fig. 1. 

The single scattering albedo of cloud droplet is 0.98 and the scattering phase function is 

the same as the first case. The incidental radiation is collimated light of 0o zenith angle. 

Boundary conditions are the same as in the first case. The scene albedos calculated using 



the SRT and the reference 3D Monte Carlo approaches are respectively 0.230 and 0.229, 

while the cloud absorptance from the SRT and 3D approach is 0.223 and 0.225. The 

accuracy of the SRT calculation is within 1% of the reference value, while the ICA and 

PPA result in -5% and 10% errors for this stratocumulus case. It can be seen from these 

three examples that the magnitude of 3D transport effects varies with many factors, 

including illumination angle, horizontal fluctuation, and shape of the spatial correlation 

function (Barker et al., 1999). 

To evaluate if SRT is able to accurately simulate the dependence of radiative fluxes on 

illumination angle, we computer the reflectance (normalized upward fluxes at the upper 

boundary) as a function of solar zenith angle. The result for transmittance (normalized 

downward fluxes at the lower boundary) is not shown here since it complements with 

reflectance for a non-absorptive medium.  It can be seen from Fig. 4 that, for the 

checkboard case, the SRT agrees extremely well with the full 3D calculations. The 

difference between 3D and ICA indicates the magnitude of 3D effects. At small solar 

angles (<18o), the 3D effects reduce the domain-average reflectance by up to 20%, 

primarily due to photon leaking from clouds to the clear region.  For large solar angles, 

the 3D effects actually enhance the domain-average reflectance by up to 80%. The 

enhancement of reflectance increases with solar angle and is mainly due to cloud side 

illumination effects (Hogan and Shonk, 2013). The SRT approach very accurately 

reproduces the 3D effects for all the examined solar angles. 

Lastly, the computational cost for the new approach is evaluated and compared with the 

conventional 1D approaches. To assure fair comparisons, the PPA and ICA approaches 



also use the same solver as the SRT, in other words, ( , )U z Ω  is set to be ( ) ( , )z I zσ Ω  in 

Eq. (2) for the PPA and ICA approaches. The computational cost of the ICA approach is 

linearly proportional to the number of subcolumns used to represent the horizontal 

heterogeneity. For the tested cloud cases, the SRT approach is 2-3 times more expensive 

than the PPA approach while the ICA approach with 100 subcloumns is 30-50 times 

more expensive than the SRT approach. Depended on the number of photon used in the 

Monte Carlo simulation, the computational cost of the full 3D approach can be several 

orders more than the PPA approach.  

4. Summary 

In this letter a new approach is presented to represent unresolved cloud structure in the 

radiation parameterization. By using a statistical-physics-like concept, we develop a 

simple 1D statistical transport theory that naturally utilizes a two-point spatial correlation 

function to describe subgrid-scale interactions that are traditionally only captured by 

computationally expensive 3D models. The proposed spatial correlation function encodes 

the most important information about the spatial arrangement and morphology of clouds 

and therefore introduces the dependence of radiation field on the 3D structure. 

Comparison studies of three types of transport media representing checker board, 

cumulus clouds, and stratocumulus clouds show that the statistical theory is capable of 

quantitatively capturing the properties of 3D transport models with several orders less 

computational costs, e.g., enhancement or suppression of reflection by allowing 

horizontal transport. In practice the 1D stochastic transport transfer approach are 

expected  to lead  to a reduction of the computational burden compared to the  brute-force 



Monte Carlo approach, and a significant increase of accuracy compared to the widely 

used approximation methods. Also noteworthy is that the spatial correlation function 

appears to be much smoother than the cloud field, indicating that the correlation function 

should be readily parameterized using point process models or stochastic geometry 

(Stoyan et al., 1995). 

 It is also important to account for other sources of error such as unresolved temporal 

variability and spectral resolution in order to develop an accurate cloud radiative transfer 

parameterization (Pincus and Stevens, 2013). Further simplification and evaluation of this 

approach at other spectral regions and broadband calculations will be the topic of our 

future work. It should be noted that the new approach developed in this study holds great 

promise to account for cloud structure in other cloud-related parameterizations.  
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Figure 1:  Spatial autocorrelation function of a stratocumulus cloud. (a) 3D rendering of the 
isosurface at extinction coefficient value of 20; (b) a horizontal cross section of the 3D cloud 
extinction coefficient field at z=0.6; and (c) the spatial autocorrelation function of this cross 
section along the x direction. 
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Figure 2: Visualization of the checkerboard medium (a), its autocorrelation functions along the x,  
diagonal, and z directions (b). Scene albedos are calculated with various aspect ratios using the 
3D Monte Carlo, SRT, PPA, and ICA approaches for 0o (c) and 30o (d) illumination angles. 
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Figure 3: Visualization of a cumulus cloud (a), its horizontal autocorrelation functions along the x 
and diagonal directions (b). Scene albedos are calculated with various aspect ratios using the 3D 
Monte Carlo, SRT, PPA, and ICA approaches for 0o (c) and 30o (d) illumination angles. 
 
 



 
 
Figure 4: The scene albedo calculated using different approaches as a function of solar zenith 
angle.  The checkboard cloud case with an aspect ratio of 1 is used to for the simulations. 
 




